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Abstract— Fast virus scanning is becoming increasingly im-
portant in today’s Internet. While Moore’s law continues to
double CPU cycle speed, virus scanning applications fail to
ride on the performance wave due to their frequent random
memory accesses. This paper proposes Hash-AV, a virus scanning
“booster” technique that aims to take advantage of improvements
in CPU performance. Using a set of hash functions and a bloom
filter array that fits in CPU second-level (L2) caches, Hash-AV
determines the majority of “no-match” cases without accesses
to main memory. Experiments show that Hash-AV improves the
performance of the open-source virus scanner Clam-AV by a
factor of 2 to 10. The key to Hash-AV’s success lies in a set of
“bad but cheap” hash functions that are used as initial hashes.

The speed of Hash-AV makes it well suited for “on-access”
virus scanning, providing greater protections to the user. Through
intercepting system calls and wrapping glibc libraries, we have
implemented an “on-access” version for Hash-AV+Clam-AV. The
on-access scanner can examine input data at a throughput of over
200Mb/s, making it suitable for network-based virus scanning.

I. INTRODUCTION

In the age of Internet and the Web, viruses proliferate
and spread easily. As a result, anti-virus technologies are
a must in today’s wired world. An effective defense needs
virus-scanning performed at every major network traffic stop
and at the end-host computers. Today, anti-virus software
applications scan traffic at e-mail gateways and corporate
gateway proxies1, and they run on end-hosts such as file
servers, desktops and laptops. Unfortunately, while the speed
of network-based intrusion detection has improved over the
years to over 1Gb/s today, the speed of virus scanning has not
kept pace.

Virtually all virus-scanning programs spend the bulk of
their time matching data streams with a set of known virus
signatures, and they all utilize some form of multi-pattern
string matching algorithm. The number of virus signatures
today is over 100,000 and is growing constantly. Unlike
intrusion detection signatures [18], virus signatures cannot be
neatly separated into rule sets consisting of a small number of
strings. As a result, data structures used by these algorithms
cannot fit in the CPU cache, and instead reside in main
memory. Traditional matching algorithms require at least one
random memory access per scanned byte [16].

The performance of random memory accesses, however,
does not improve nearly as much as the CPU speed or even
sequential memory access throughput. For example, in the past

1Last year’s episode of Download.Ject web site infection [15] clearly
highlights the importance of scanning viruses at Web proxy gateways.

decade, CPU processing speed has been doubling every 18
months, yet memory speed only improved at a rate of less
than 10% per year.

In this paper, we propose a new virus scanning technique
that aims to ride the CPU speed curve. Our solution, called
“Hash-AV”, combines a set of hash functions and a bloom
filter array 2 that fits in the CPU second-level (L2) cache.
Hash-AV determines the majority of the “no-match” cases
quickly, without incurring main memory accesses. Since the
majority of network traffic does not contain viruses, most of
the data stream belongs to the “no-match” case.

The intuition behind Hash-AV is the following. Currently,
one L2 cache miss costs about 150-200 CPU cycles, and the
speed gap keeps increasing [7]. While reading new incoming
data, the CPU has to take a cache miss. Once a piece of data
has been brought from main memory into the CPU cache,
Hash-AV can scan the data using its cache-resident bloom filter
while the CPU waits for the next cache miss.

Using bloom filters to speed up signature matching is not
a new idea [3], [19]. For example, research groups have pro-
posed specialized hardware solutions that use parallel bloom
filters to scan packets at very high speed [19]. However,
the key difference between those hardware solutions and our
software solution is that the CPU computation cost of hash
functions is not a concern in the former, but a key concern in
the latter. If the hash functions are not chosen well, computing
the hashes can easily take enough CPU cycles to obliterate the
advantage of cache-resident filters.

Hash-AV addresses the problem by using “bad but cheap”
hash functions as initial hashes, and relying on serial hash
lookups. The “good but expensive” hash functions are only
calculated when the cheap initial hashes indicate a match,
effectively reducing the CPU computation of the bloom filter
probe.

We have applied Hash-AV to Clam-AV [12], the most
popular open source anti-virus software. Hash-AV improves
Clam-AV’s scanning throughput to 29.4 MB/s for executables,
16.6 MB/s for web pages, and 29.5 MB/s for random data, on
an Athlon XP 2000+. This represents a speed-up factor of
1.7 to 4.4. The speed improvement doubles as the size of the
signature database increases from 20K to 120K. Furthermore,
if polymorphic viruses are handled separately using emulation,

2A bloom filter is a bit array holding results of multiple hash functions on
a set of strings. A string can be queried against the filter; the filter generates
false positives but never false negatives. Bloom filters are used wherever a
compact representation of a set is needed [3].



Clam-AV with Hash-AV can scan executables at 85 MB/s,
web pages at 91 MB/s, and random data at 120MB/s. Given
that the memory copy speed is 260 MB/s on the Athlon XP
2000+, the results confirmed our intuition that virus scanning
can potentially reach memory copy speeds.

We have also implemented an “on-access” scanning mode
through system call interception and glibc library wrapping.
In this mode, Hash-AV+Clam-AV can scan input at over
200Mb/s, making feasible to embed virus scanning in network
routers and switches that have application-recognition and
reconstruction capabilities [4], [10]. Embedding virus scanning
in network devices enables much faster updates of virus
signature databases, and is a valuable addition to existing
security mechanisms in a network.

Finally, Hash-AV’s application is not limited to virus scan-
ning. It can benefit any string matching applications that have
the following characteristics: a) exact matching is required,
and the number of signatures is high (e.g. > 10,000); b)
the majority of the cases are “no-match” cases; c) no easy
“tokenization” methods exist, so the matching has to be tested
byte-by-byte. For any such system, Hash-AV principles and
designs apply, though the specific choices of hash functions
might differ.

II. VIRUS SCANNING TECHNIQUES AND CLAM-AV

There are three main techniques used in virus-scanning:

• signature-matching: check if a file contains a known virus
by searching for a fixed string of bytes (the “signature”
of the virus) in the data.

• emulation: check if a file contains a polymorphic virus
(those that change from occurrence to occurrence) by
executing the instructions of an executable in an emulated
environment, and then looking for a fixed string (the
“signature”) in the memory region of the process [22].

• behavior-checking: check if a file contains an unknown
virus by running the file in an emulated environment and
observing its behavior.

Behavior-checking is typically run on a specific file to deter-
mine if the file contains a new virus. Since it is not routinely
run, its performance is usually not a concern. Emulation is
typically used only on executables matching certain criteria.
Signature-matching is routinely run on all files.

In both signature-matching and emulation, most of the CPU
time is spent matching the data against a set of strings.
Commercial virus-scanning software has databases containing
over 100,000 virus signatures. The signatures typically contain
at least 15 bytes [11].

a) Clam-AV: Clam-AV is the most widely used open-
source anti-virus scanner [12]. It is used by many organizations
in their mail servers, and has been incorporated into com-
mercial anti-virus gateway products [10]. As of July 2005,
it has a database of over 30,000 viruses, and consists of a
core scanner library and various command-line programs. The
database includes over 28,000 plain-text strings and over 1,300
strings with wild-card characters embedded. The plain-text

strings are for non-polymorphic viruses, and the strings with
wild-card characters are for polymorphic viruses.

The current version of Clam-AV uses an optimized version
of the Boyer-Moore (BM) algorithm [2] for non-polymorphic
signatures, and uses the Aho-Corasick (AC) algorithm [1] for
polymorphic ones.

The Boyer-Moore implementation in Clam-AV uses a “shift-
table” to reduce the number of times the Boyer-Moore routine
is called. At start up, Clam-AV walks over every signature,
byte by byte, and hashes the three-byte chunk to initialize a
global shift table. Then, at any point in the input stream, Clam-
AV can determine if it can skip up to three bytes by performing
a quick hash on them. Clam-AV also creates a hash table based
on the first three bytes of the signature, and uses this table
at run-time when the shift table returns a match. Since this
algorithm uses hash functions on all bytes of a signature, it is
only applicable for non-polymorphic signatures.

The Aho-Corasick implementation uses a trie to store the
automaton generated from the polymorphic signatures. To
quickly perform a lookup in this trie, Clam-AV uses a 256
element array for each node. It also modifies Aho-Corasick
such that the trie has a height of two, and the leaf nodes
contain a linked list of possible patterns. Clam-AV fixes its
trie depth to two because its database of polymorphic viruses
have signatures with prefixes as short as two bytes.

III. DESIGN OF HASH-AV

Hash-AV utilizes the fact that, while virus scanning must be
done on network traffic, the vast majority of the data do not
contain viruses. Therefore, it aims to determine the no-match
cases with high accuracy, minimal main-memory access and
a small number of CPU instructions. It achieves the goals by
using a filter that fits in CPU caches and acts as a first-pass
scan to determine if the data need to go through an exact-
match algorithm.

Specifically, Hash-AV moves a sliding window of β bytes
down the input stream. For each β bytes under the window, k

hash functions are applied to calculate their hashes. The hash
results are then used to probe into a bit array of N bits, which
is a bloom filter [3] pre-constructed from the virus signatures.

A. Basic Mechanisms

Hash-AV constructs a bloom filter from the set of plain-
text signatures. The bloom filter is a vector of N bits,
initially all set to 0. For each plain-text signature, k hash
functions are applied to its first β bytes a, with results
h1(a), h2(a), ..., hk(a), all in the range of 1, ..., N . The bits
at positions h1(a), h2(a), ..., hk(a) are then set to 1.

At scanning time, Hash-AV moves over the input data
stream one byte at a time. For each β byte block b, the
scanning algorithm applies the first hash function, h1(b), and
checks the corresponding bit in the bloom filter. If the bit is 1,
it computes the next hash function h2(b); if not, it immediately
goes over to the next byte, and starts applying hash functions
over the next β-byte block.



In the case where all k functions have positive bloom filter
matches, Hash-AV needs to check for exact match. There are
two alternatives here. One is to use Boyer-Moore. Another
is to pre-construct a “secondary hash table” using the last
hash function hk, with each entry holding a linked list of
signatures which are checked linearly. Hash-AV adopts the
latter approach, since the number of signatures in each entry
is low.

Several aspects of Hash-AV differentiate it from other ap-
proaches. Most commercial scanners use hash-tables to speed
up string matching [23], similar to Hash-AV use of the
secondary hash table. However, the data structure involved
usually does not fit in cache, and the false positive ratio from
a single hash function is higher than the bloom filter. Clam-
AV uses a cache-resident shift table to reduce the number
of times the Boyer-Moore algorithm is called. Unfortunately,
since the shift table has to fit in cache, only 3 bytes are
used and the resulting false positive ratio is high. In essence,
comapred to these schemes, bloom filters are much more
compact, and the use of multiple hash functions results in
much lower false positives. Other researchers have proposed
using hardware bloom filters to perform high-speed network
intrusion detection [19]. However, in those designs, all hash
functions are calculated at the same time using parallel ASIC
hardware. Hash-AV applies hash functions serially, in an effort
to reduce the number of CPU instructions consumed.

Based on our prior experience in using bloom filters [13],
k = 4 works well. Therefore, there are three choices left in
setting up Hash-AV:

• Choosing four hash functions;
• Choosing the size of the bloom filter;
• Choosing β;

Below, we use a simple model to briefly analyze the impact
of each choice.

B. A Simple Performance Model

Assume that the four hash functions are h1, h2, h3, and h4,
applied in that order. Furthermore, assume that the function hi

can be calculated at ci MB/s. Let the total number of signatures
be M , and the size of the bloom filter be M ∗ K bits. The
function h1 then has a false positive probability of p1 in the
bloom filter. The probability p1 is determined by both the hash
function and the bloom filter’s expansion factor K.

Similarly, h2 has a false positive probability of p2,1 in h1’s
false positive cases. In other words, p2,1 is the conditional
probability of false positive under h2 given that h1 has a false
positive. The ratios p3,2,1 and p4,3,2,1 are defined similarly.

The performance of the scanning algorithm can be modeled
using the above parameters. Note that h2 is called when h1

hits in the bloom filter (i.e. h1’s bit is 1), h3 is called when
both h1 and h2 hit in the bloom filter, and h4 is called when
all three previous hash functions hit in the bloom filter. Thus,
the throughput of the scanning algorithm is:

c1 + p1 ∗ c2 + p1 ∗ p2,1 ∗ c3 + p1 ∗ p2,1 ∗ p3,2,1 ∗ c4 + p1 ∗

p2,1 ∗ p3,2,1 ∗ p4,3,2,1 ∗ C

where C is the cost of the exact string matching algorithm.
Clearly, since all the probabilities are between 0 and 1, the
hash functions should be ordered from the cheapest (compu-
tationally) to the most expensive.

The above formula leads to a number of insights. First, it
pays to use very fast, but mediocre hash functions for h1

and h2. A hashing function which has 15% error rate but
takes five CPU cycles to calculate is a poor choice in other
circumstances, but serves very well to our purpose. In fact,
these cheap functions help us make the theoretical argument
that the Hash-AV scanning algorithm can potentially perform
at near memory system throughput.

Second, it’s important to choose hash functions that are
independent. Completely independent hash functions would
have the conditional false positive probabilities the same as the
unconditional false positive probabilities. On the other hand,
non-independent hash functions tend to have the conditional
probabilities close to 1, defeating the purpose of multiple hash
functions.

Third, the probabilities are affected by the bloom filter’s
expansion factor K. Since the cost of the exact string matching
algorithm, C, might be one or two orders of magnitude higher
than the cost of the hash functions, it’s important that the
bloom filter do not contribute significantly to the false positive
ratios. In the sections below, we use experiments to determine
the appropriate K.

Finally, there is a lower bound on the probabilities p1∗p2,1∗

p3,2,1 ∗ p4,3,2,1, which is determined by the parameter β. In
other words, there is a probability that strings that match the
first β characters do not match the full signature. In general,
longer βs are better. However, a longer β also means that
shorter signatures (those of length < β + 3) must be handled
by a different mechanism. Hence, the choice of β also affects
the performance.

C. Evaluation methodology

We evaluate the benefits of Hash-AV for both the current
Clam-AV database (about 30,000 signatures) and a database
containing 120,000 signatures. The signature database for
Clam-AV is growing very rapidly. Hence, it is essential that
Hash-AV scales for large signature databases.

To generate more signatures, we wrote a synthetic virus
generator that examines the properties of the current Clam-
AV database, and tries to generate realistic virus signatures.

The generator works as follows. At startup, it reads in the
non-polymorphic and polymorphic signatures in Clam-AV’s
database into different arrays in memory. Then it extracts
two pieces of information: the distribution of virus signature
lengths, and the percentage of polymorphic patterns in the
database. Based on these pieces of data, for each “new” virus,
the generator first chooses its length and its type (i.e. non-
polymorphic or polymorphic). For byte i in the new virus, the
generator randomly picks an existing signature, and copies
its byte i. For each byte index, this algorithm statistically
favors the most common byte for that index. Since Clam-AV’s
polymorphic signatures only use wild-card ASCII characters



* and ?? in between bytes (with * matching any string and ??
matching any single character), this approach generates viruses
that are as polymorphic as the ones in the database.

For most experiments, the sample file is an 120MB file
created by concatenating together widely used Windows ex-
ecutables that are over 3 MB in size, including MS Office
executables, messenger programs, third-party software used
for scientific and entertainment purposes. We focus on win-
dows executable files since the majority of viruses spread
through executables and commercial scanners focus heavily on
executable files. In our selection, we pay attention to including
only the executable binaries, and avoid setup programs since
Hash-AV runs much faster on them.

Our experiments are run on an Athlon 64 3200+ PC, with
2.0 Ghz CPU, 128KB L1, and 512KB L2 cache. We have
also repeated the experiments on an Athlon XP 2000+ and a
Pentium-4 2.6Ghz PC, and found matching results.

IV. HASH-AV COMPONENTS

To actually construct a Hash-AV filter, we need to determine
the variables listed in the above section. Below, we use
experiments to determine each component of the filter. Since
the choices are intertwined, we first fix β to 7, and study the
hash functions and bloom filter sizes. We then return to the
choice of β near the end.

A. Selecting Hash Functions

The criteria for the hash functions are that they should be
cheap and they should produce relatively random distributions.
We first chose a set of well-known fast hash functions from
the open source community. The functions usually have 0.2%
to 1% collision rate on our sample files, and work well on
inputs longer than 4 bytes.

Table 1 list the hash functions, giving their performance
measurements over a sample executable of 120 MB, and the
percentage of false positives in the filter. For these tests, β

is 7 and the bloom filter size is 256 KB. The throughput
measurement contains the cost of hashing each block and the
overhead of probing the bloom filter to see if there is a match.

Hash Name Hash Perf % of unfiltered
(MB/s) input

fnv-32-prime [17] 27.44 1.75%
djb2 [26] 43.79 1.77%

hashlib fast-hash [9] 46.22 1.76%
sdbm [25] 36.25 1.75%

ElfHash [20] 25.30 7.46%

We were disappointed with these hash functions. They
might be considered fast compared to other hash functions, but
not compared to memory-copy speed, which goes at 260MB/s
on the desktops.

We then tried two really fast “hash” functions: “mask” and
“xor+shift”. “Mask” takes the first four bytes, casts them to an
integer, and chooses the lowest log2(N) bits, where N is the
size of the bloom filter. “Xor+shift” takes the first six bytes,

casts bytes 0-3 into an integer, and xors this word with 0 to
get the first hash value. It then repeats the same operation
two more times, for bytes 1-4 and 2-5, always xoring with
the previous hash value to get the next one. It then picks the
lower log2(N) bits of the final integer to check against the
filter. “Mask” and “xor+shift” can be computed at throughputs
of 160 MB/s and 120 MB/s consecutively.

On virus signatures, “mask” and “xor+shift” can filter away
88% and 96% of the input bytes. As standalone hash functions
their false positives would be too high. However, used as first
level hash functions, they can effectively cut down the number
of times that the “good” hash functions are calculated by an
order of magnitude.

Hence, Hash-AV contains the following four hash functions:
mask, xor+shift, fast hash from hashlib.c [9] and sdbm [25].
Sdbm is chosen over djb2 because the correlation between fast
hash and djb2 is high.

B. Selecting Bloom Filter Sizes

Traditional bloom filter implementations choose filter sizes
such that half of the filter bits are 1. In Hash-AV, however, a
number of factors impact the choice of the bloom filter size:

• the CPU cache effect: the portion of the filter that fits in
the CPU cache, and the cache miss ratio in cases when
the filter cannot all fit in the cache.

• the initial hash function effect: the initial hash functions
are much faster than the latter ones. However, how much
of the input data that the initial hashes filter away depends
on the sparsity of the bloom filter.

• the false hit ratio: A 3% false hit ratio in a bloom filter
might be acceptable if the cost of the false hit is only an
order of magnitude higher than the cost of a filter probe.
However, it would not be acceptable if the cost of the
false hit is two orders of magnitude higher.

Clearly, the choices are intertwined, and depend on the
relative ratio of the cache size and the size of the filter. Below,
we use a variety of experiments to examine the factors one by
one.

1) Pure Hashing Speed: Given our choice of hash func-
tions, we first look at the pure “hash and lookup” speed under
different filter sizes, for databases of both 30,000 and 120,000
signatures. This “pure hashing” speed factors out the effect
of false hit ratios, and instead reflects the impact of the CPU
cache and the cheap hash functions. Figure 1 shows the results
on the AMD desktop.

For 30,000 signatures, the results peak at AMD’s second-
level cache size. This is not surprising since, as long as
the filter fits in the cache, large filters lead to more input
eliminated by “mask” and “xor+shift”, but if the filter does
not fit in the cache, the cache miss latency dominates the
throughput.

For 120,000 signatures, the performance difference between
the 512KB filter and larger filters is not as dramatic. This has
two reasons. First, in small filters, the initial hash functions
generate too many false positives, leading to more hash
calculations that dominate the run-time performance. Second,



Fig. 1. Performance (in MB/s) of pure hashing for different bloom filter
sizes.

Fig. 2. CPU cache miss rates for the mask operation with different bloom
filter sizes.

thanks to locality of accesses in the filter, even for large filters,
a significant number of signatures can be verified from the
CPU cache.

We used Cachegrind [21], a cache miss profiler, to examine
the cache miss ratio of Hash-AV for 120,000 signatures. When
executed, Cachegrind runs the target program on a simulated
x86 CPU, and reports the number of misses. Cachegrind
implements the “inclusive L2 cache” semantics, the standard
on Pentium machines. Therefore, the results derived from
Cachegrind traces are accurate enough, but are not exact
representations of AMD Athlon’s cache behavior.

Figure 2 shows the CPU cache miss rates reported by
Cachegrind on the 120 MB sample file and a 100 MB random
file. This low miss rate on executables, even for very large
bloom filters, means that the input stream is clustered around
certain values. To further analyze the sample executable file,
we implemented a program that goes over the input four bytes
at a time, and constructs a histogram of the values of the
mask operation. Figure 3 shows the resulting histogram of
256 bins. Also, index 0 in the array is removed from the
histogram, as this value appears 3 times more than that of
the second highest value. Overall, 37.9% of all mask accesses
are contained within 5.47% of the bloom filter.

Fig. 3. Distribution of binary data after mask operation (excludes index 0).

Fig. 4. Performance (in MB/s) of Hash-AV for different bloom filter sizes.
β is fixed at 9.

In addition to the above skewed distribution, we found that
most of the words in executable files are closely correlated,
and our mask function preserves this correlation in the bloom
filter. Since cache architectures rely on locality of access, both
temporal and spatial, the cache miss rate for executables can
stay at a reasonable level, even for big filter sizes. This helps
the performance of large filters since a good portion of heavily
accessed data still fits in the CPU cache.

In summary, for small number of signatures, the CPU cache
size should be chosen as the bloom filter size. For large number
of signatures, other factors play a bigger role.

2) Scanning Speed and Bloom Filter Sizes: While the above
experiments look into the pure hashing and probing speed, the
actual performance of Hash-AV also depends on the overhead
of the exact match algorithm. Figure 4 shows the speed of
Hash-AV on the Athlon 64 3200+ desktop over the sample
120MB executable file. The file is first mapped into memory,
and the tests are run on a warm cache to eliminate the disk
access overhead.

As the results show, the best filter size is mostly determined
by the CPU L2 cache size. For both 30,000 and 120,000 signa-
tures, Hash-AV achieves its best performance with 512KB (i.e.
the L2 cache size) bloom filter. The impact of larger filters is
less pronounced on the 120,000 signatures, since larger filters



Fig. 5. Performance (in MB/s) of Hash-AV implementation for different βs.

reduce the false positive ratio rapidly for this set of signatures.

C. Selecting β

The choice of β is mainly affected by the distribution of
signature lengths in the signature database. Generally, larger
βs are preferred since strings that match the first β bytes
in a signature are more likely to match the actual signature.
On the other hand, dramatically increasing β has two side-
effects. First, the hash functions take more time to compute the
result, which in turn slows the algorithm down. Second, with a
bigger β, Hash-AV has to leave out short signatures. The short
signatures are then handled together with the polymorphic
ones in a separate scan using the Aho-Corasick algorithm. The
“xor+shift” function is designed to operate on six bytes of data,
and other hash functions can’t distinguish input accurately for
small input streams. Therefore, a lower limit of six is set on
β.

Figure 5 shows the Hash-AV’s throughput for different
choices of β with 30,000 and 120,000 signatures on an Athlon
64 3200+. Increasing β leads to a significant performance
increase at first; this is because of the high number of false
positives that are eliminated. Then the graph converges to
a maximum, this is the stage where the trade-off between
eliminating more false positives and spending more time in
hash functions brings the performance to an equilibrium state.

Weighting these effects of β, we decided to choose β = 7
in our algorithms.

D. Helper Tools for Different CPUs

The proper choices of the various parameters in Hash-
AV depend heavily on the characteristics of the hardware on
the system. Hash-AV tries to push the scanning performance
up to a maximum by using both memory and the CPU
very efficiently. Computers built today use a wide variety of
hardware components, with varying CPU speeds, CPU cache
sizes, memory bus bandwidths, and memory access speeds.
To help tuning Hash-AV for different systems, we constructed
two tools.

The first tool, called the Hash Performance Tester, attempts
to determine the best hash functions on a CPU architecture.
The functions that we chose are known to perform well

on x86 architectures. However, different CPU architectures
have different characteristics. For example, shift operations are
slower on Pentium 4 based architectures, and multiplication
is slower on Sun based systems. Hence, the tool contains
implementations of seven hash functions, and uses a script
to compare their speeds on the target system. The tool then
recommends the four fastest hash functions.

The second tool chooses bloom filter size and β. The script
generates, compiles and executes code for filter sizes between
64 KB - 128 MB (variables may be set by the user). It chooses
the filter size that leads to the fastest execution speed. β

chooser acts in a similar way, probing β sizes between 6-15
bytes. It picks the smallest value from the equilibrium state in
the graph.

These tools helped us determine appropriate parameter
settings for Pentium 4 2.6 Ghz. Though the tools have no
knowledge of the CPU architecture, they did determine that
the appropriate bloom filter size for the Pentium architecture
should be 512KB.

V. PERFORMANCE BENEFITS OF HASH-AV

We compare the throughput of Hash-AV with that of Clam-
AV, using both the 30,000 signature database and the 120K
signature database. The current implementation of Hash-AV
focuses on improving the scanning speed for plain-text signa-
tures. It uses the same Aho-Corasick (AC) implementation as
Clam-AV, hence is subject to performance reduction caused
by that module3. To separate the effect of the AC module, we
compare the scanners in two modes, one scanning for plain-
text signatures only (i.e. Hash-AV vs. ClamAV-BM), and the
other scanning for both plain-text signatures and polymorphic
signatures (i.e. Hash-AV+AC vs. ClamAV-BM+AC).

Commercial products are not included in this evaluation
for two reasons. First, commercial virus databases are quite
different from Clam-AV’s database. Second, a number of
techniques used by the commercial scanners are not yet
implemented in Clam-AV. For example, file-type or virus-type
specific information can be used to scan only parts of the file,
emulation engines can be used to handle polymorphic viruses,
etc. Hash-AV is complimentary to these techniques and can
be combined with them to improve the scanning speed further.
However, these techniques does make it difficult to compare
the performance of commercial scanners with that of Clam-
AV.

In the experiments, three different types of inputs are used:
the 120MB sample executable file as described in Section III-
C, a file of 99 MB containing HTML data crawled from the
web, and a 100 MB random file. We choose to use an HTML
file since Clam-AV is often used at Web proxy gateways and
e-mail servers, which tend to see a lot of HTML text. We
include a random file in our tests as they are commonly used
in benchmarks for multi-pattern string matching algorithms.

3The principles in Hash-AV can be used to speed up the scanning of
polymorphic signatures. We have not yet explored this venue because an
emulation engine maybe a more effective defense against these viruses.



Fig. 6. Throughput of Hash-AV and ClamAV-BM on different types of
input files, using the set of plain-text signatures in the existing ClamAV virus
database (about 28,000 signatures).

Fig. 7. File scan throughput of Hash-AV+AC and ClamAV-BM+AC, using
the existing Clam-AV virus database (about 28,000 plain-text signatures and
2,000 polymorphic signatures).

Figure 6 shows the throughput of Hash-AV and ClamAV-
BM scanning for 28,000 plain-text signatures from the current
virus database of ClamAV. Figure 7 shows the throughput
of Hash-AV+AC and ClamAV-BM+AC, scanning for all sig-
natures in the current ClamAV database. Figure 6 demon-
strates the speedup offered by the approaches in Hash-AV;
the scanning speed is improved by a factor of 8 to 15.
Even though scanning for polymorphic signatures (i.e. the AC
module) caused a slowdown, Figure 7 shows that Hash-AV
still outperforms Clam-AV by a factor of 1.8 to 4.4 on the full
set of signatures.

To examine the scalability of Hash-AV and Clam-AV, we
repeated the experiments on the 120,000 signature set. Figure
8 and Figure 9 show the results. Hash-AV scales better
than Clam-AV; as the database size increases, the throughput
reduction in Hash-AV is much less than that of Clam-AV,
particularly on executable inputs and random inputs.

a) Worst-Case Performance of Hash-AV: All string-
matching algorithms have varying performances depending
upon the input. Hash-AV is no exception. An attacker could
construct inputs so that the scanning speed of Hash-AV is
reduced to that of exact string matching algorithm. This
usually does not present a problem for desktops, but would be

Fig. 8. Throughput of Hash-AV and ClamAV-BM scanning for 112,000
plain-text signatures. (The method of signature generation is described in
Section III-C.)

Fig. 9. Throughput of Hash-AV and ClamAV-BM scanning for 120,000
signatures, including both plain-text and polymorphic signatures. (The method
of signature generation is described in Section III-C.)

a problem for application gateways such as mail servers and
web proxies. However, application gateways typically have
other means to mitigate these attacks. For example, they can
scan different mailboxes or different HTTP streams in separate
processes, and use CPU scheduling to ensure that processes
that are scanning slowly do not impact other processes.

VI. EMBEDDING AV SCANNING

Due to its high performance, Hash-AV is well suited for
“on-access” virus scanning. In the “on-access” mode, a file
is automatically scanned whenever it is used, and data from
the network are scanned when they are received by the
application (i.e. socket reads). “On-access” virus scanning
typically provides greater protection to the user.

We have implemented two approaches for on-access scan-
ning of Hash-AV on Linux. The first approach uses Dazuko [8]
to pass open/close/exec system calls to Hash-AV. The sec-
ond approach implements a wrapper around the glibc read(),
write(), send() and recv() code to pass the data to Hash-AV for
scanning. The implementation is packaged as a dynamically
linked library libcav.so, and applications link with this library
instead of the regular libc.so to enable virus-scanning. The first
approach is suited for file accesses, and the second approach



is suited for socket accesses.
When used in on-access scanning mode, Hash-AV keeps

state across invocations. After Hash-AV scans the buffer, if
the exact-match code is invoked and reaches the end of buffer
with a partially scanned pattern, that pattern is saved along
with the offset. Upon the next invocation, the Hash-AV code
first checks if the saved patterns now have a complete match
or an extended partial match. If an extended partial match
occurs, the pattern is saved around. With large enough reads,
the cost of saving and processing the state is negligible.

We compare the performance overhead of the different
approaches to embedded scanning by issuing reads of the
sample 120MB executable file used in previous tests. The
existing Clam-AV virus database is used in these experiments.
The table below shows the performance cost associated with
each one of these approaches.

Applied Method Performance
(MB/s)

Command Line Scanning 27.19
Intercepting open/close/exec via Dazuko 26.85

Wrapping glibc calls: 20.98

The first row is how fast Hash-AV+AC performs on the
file. The second row is the throughput of intercepting open()
via Dazuko and scanning the file following the call. The
throughput change is due to the overhead of intercepting the
call and passing it to a user level program. The third row shows
the results of reading the executable in chunks of 4 MBs, with
each read call issued to libcav.so. The throughput change is
due to the repeated calls of the scanner code, and an extra
memory copy in our implementation.

Note that in on-access mode, the throughput of Hash-
AV+AC is nearly 200Mb/s. Since most desktops’ connections
to the Internet are well below 200Mb/s, attaching virus scan-
ning to socket reads and writes would not affect applications
receiving data from the Internet.

We confirm this expectation by linking the wget application
with libcav.so, and measuring the speed of fetching files
between machines. When transferring the 120MB executable
file between two computers connected by a 100 baseT switch,
wget without virus scanning takes 8704 milli-seconds, and
wget with virus scanning takes 10453 milli-seconds. Approx-
imately 470 ms of the overhead comes from the initialization
time of Clam-AV and HashAV’s data structures. The rest of
the slow down is mainly due to state saving and restoring
between consecutive reads that happen in chunks of 8 KB in
wget.

A similar performance test for transferring HTML docu-
ments shows better results primarily because of the decrease
in partial matches and associated state saving. The transfer
time for a sample 99 MB HTML document is 10021 milli-
seconds for raw data transfer, and 10660 milli-seconds for
transfer with AV scanning.

In summary, Hash-AV+AC is well suited for on-access
scanning of network transfers for most desktops, and can

be used as a component in a file system on-access scanning
implementation, for example, avfs [24].

VII. RELATED WORK

Multi-string pattern matching algorithms is a well-studied
topic with applications in many domains [14]. In the network-
ing area, the two prominent applications are IDS (Intrusion
Detection Systems) and virus scanners. Recently, several in-
novations have been proposed for pattern matching in IDS, for
example, hardware-based parallel bloom filters [19], and novel
compression techniques to reduce memory requirements of
IDS and improve hardware implementation performance [16].
However, these studies have not looked into virus scanning
applications, which are quite different from IDS systems [6].

Our focus on virus scanning applications and software
implementation distinguishes our study from the above efforts.
Virus scanning applications are commonly host-based, as
opposed to IDS systems which are commonly network-based.
As a result, software implementations running on generic pro-
cessors are more appropriate for virus scanners than hardware
implementations. Software implementation is different from
hardware implementation due to serial applications of hash
functions, stringent requirements on the CPU cost of a hash
function, and the performance impact of good cache locality.
As a result, design choices for software implementation are
quite different from those of hardware implementations.

Recently, there have been renewed focus on improving
the scalability of Clam-AV [5], [24]. In addition, the Avfs
paper [24] provides an excellent study of the issues involved
in integrating virus scanners in file system implementation.
The techniques described in these studies are complementary
to Hash-AV, and the techniques should be combined together
to further improve Clam-AV performance.

Because of their importance, there have been constant
improvements on multi-string matching algorithms and their
variations. Hash-AV is a “booster” technique that is indepen-
dent of the underlying string matching algorithm, and can be
combined with any improved matching algorithm. The benefit
of Hash-AV is in quickly determining no-match cases in a
CPU cache-friendly manner, and Hash-AV is beneficial to any
systems where the no-match cases are the vast majority.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that, through judicious use
of the CPU cache, Hash-AV can significantly improve the
performance of the open-source virus scanner Clam-AV. By
using cache-resident bloom filters, Hash-AV determines the
vast majority of the “no-match” cases with no main memory
accesses. By using cheap hash functions whose computational
costs are hidden by memory access delays, Hash-AV can
potentially scan inputs at a third of memory copy speeds.
Since the speed gap between CPU computations and random
memory accesses continues to increase, we expect Hash-AV
to become more critical for virus scanning performance.

Key to Hash-AV’s success is the use of very cheap func-
tions such as “mask” and “xor+shift”. While in ordinary



circumstances they are not good hash functions, they are very
effective as initial functions in a serial application of a set
of hash functions. Though our particular choices might be
considered specific to virus signatures, we believe that in any
application where the “no-match” cases are the majority, one
can find a very cheap operation that eliminates a significant
portion of the input data.

For future work, we plan to improve polymorphic virus de-
tection. Currently, both Clam-AV and Hash-AV rely on multi-
part signatures for polymorphic viruses, which are handled
by the Aho-Corasick algorithm. We plan to look into cache-
friendly techniques to speed up matching of those multi-part
signatures. We also plan to investigate efficient emulation
engines for polymorphic virus detection. For example, one
possibility for efficient emulation engine would be through
uses of virtual machine technologies.

Finally, we plan to apply Hash-AV to other large-signature-
set pattern matching applications, for example, certain infor-
mation retrieval and anti-spam applications. The configurations
of Hash-AV are likely to be different in those applications,
and new capabilities such as handling “do-not-care” characters
might be needed as well.
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